
Data Consistency of Distributed Transaction

for Order Management

Phyoe Su Su Win, Thet Su Mon

Computer University, Taung-Ngu

sulattphyo@gmail.com, thetsumon18@gmail.com

Abstract

The general elements of transaction processing

are data capture and validation, transaction-

dependent processing steps and database

maintenance. Database Management Systems

(DBMS) are among the most complicated

applications. While DBMS maintains all information

in the database, applications can access this

information through statements made in Structured

Query Language (SQL), a language for specifying

high-level operations. This paper intends to build a

distributed transaction management system for store

ordering with recovery control to guarantee the

consistency of database. When the server crashes or

connection fails, the uncommitted transaction is

saved at the client store as the recoverable objects

and will undo at the next time for database

consistency.

1. Introduction

In today’s electronic world, most companies

have implemented database systems and track the

transactions of their daily operations. Many forward-

looking companies have implemented transaction

management systems to empower their staff to make

sensible business decisions. In today’s competitive

global economy, managers are increasingly aware of

the fact that their data resources are necessary for

their organization. The growth of distributed system

has made it possible to impact the transaction

processing in a large scale. One of the effective usage

of distributed transaction processing system is in

distributed store management system. Nowadays,

commerce is larger and larger and it affects to open

new branch offices in different locations. Therefore it

is important to handle the order of each branch by the

head office. This proposed system intends to provide

the orders of client branches to many different

servers or product suppliers.

In this system, there are one or more head offices

(servers) and stores (clients) located at the different

locations. The clients will made requests to server’s

services to order sale items and can get the reply

from the server. The server will accept the requests of

order from different clients and check that whether

the amount of items requested and the balance of this

items is validate or not. If it is validate, the server

will make the transaction process in itself and reply

“order transaction is valid” message and then the

client may know that the transaction is valid.

Otherwise the server will return one of the “Invalid”

messages to client and the client can make some

changes in the transaction. This system will provide

simplification of using the system and interact

effectively to the users’ requests.

2. Related Works

In [5], the author proposed the Transaction

Management Architecture and Business Plan for

implementation of Transaction Management System

(TMS). They provided access to their transmission

system in order to promote competition in wholesale

power market. Their TMS is envisioned to automate

and integrate the market interface and to coordinate

security processes. Their system is fast and reliable

enough to handle the hourly market transactions.

In [6], the author proposed a formula to provide

the design of bank communication system. They

presented the key issues of high availability, traffic

prioritization and security. And they also presented

authentication mechanisms on personal identification,

digital certificate, and biometric.

3. Background Theory

A database system is basically a computerized

record keeping system. The main purpose is to store

information and to allow users retrieve and update

that information on demand. [3]

3.1 Database Management

Users of the system can perform a variety of

operations on such files-

o Adding new, empty files to the database;

o Inserting data into existing files;

o Retrieving data from existing files;

o Changing data in existing files;

o Deleting data from existing files;

3.2 Database Management System

Database management system (DBMS) is

computer software designed for the purpose of

mailto:phyo@gmail.com
mailto:thetsumon18@gmail.com

managing databases based on a variety of data

models. A DBMS is a complex set of software

programs that controls the organization, storage

management, and retrieval of data in a database.

DBMS are categorized according to their data

structures or types, sometimes DBMS is also known

as Database Manager. It is a set of prewritten

program that are used to store, update and retrieve a

database. A DBMS includes [3]:

o A modeling language to define the schema of

each database hosted in the DBMS, according to

the DBMS data model.

o Data structure optimized to deal with very large

amounts of data stored on a permanent data

storage device.

o A database query language and report writer to

allow users to interactively interrogate the

database, analyze its data and update it according

to the users privileges on data.

o A transaction mechanism that ideally would

guarantee the ACID properties, in order to

ensure data integrity.

4. Distributed Transaction Management

 The goal of transaction is to ensure that all of the

objects managed by a server remain in a consistent

state in the presence of server crashes. The server

must guarantee that both transactions are carried out

and the results recorded in permanent storage, or in

the case of crashes, the effects are completely erased.

The object that can be recovered after the server

crashes is called recoverable object.

A client transaction becomes distributed if it

invokes operations in several different servers. There

are two different types of distributed transactions:

o Flat transaction

o Nested transaction [2]

In a flat transaction, a client makes requests to

more than one server. For example, in figure 1,

transaction T is a flat transaction that invokes

operations on objects in servers X, Y and Z. A flat

client transaction completes each of its requests

before going on to the next one. Therefore each

transaction accesses servers’ objects sequentially. [2]

Figure 1. Flat Distributed Transaction

 In a nested transaction, the top level transaction

can open subtransactions and each subtransaction can

open further subtransactions down to any depth of

nesting. [2]

Figure 2. Nested Distributed Transaction

 Figure 2 shows a client’s transaction T that

opens two subtransactions T1 and T2, which access

objects at server X and Y. The subtransactions T1

and T2 open further subtransactions T11, T12, T21

and T22, which access objects at servers M, N and P.

In the nested case, subtransactions at the same level

can run concurrently, so T1 and T2 are concurrent,

and, they can run in parallel. The four subtransactions

T11, T12, T21 and T22 also run concurrently. [2]

 This proposed system uses flat architecture of

distributed transaction.

4.1 Client/ Server Network Environment

The client/server method of network

communications is the most popular today. Its ease

of implementation and scalability make it a good

choice in many different kinds of networking

environments. A client is a computer that requests

access to shared network resources from a server, a

computer that provides shared resources in response

to client request. Client/server computing generally

refers to a network structure in which the client

computer and the server computer share the

processing requirement. A server is best described as

a machine whose only function is to respond to client

requests. [4]

Server-based networks provide centralized

control over network resources, primarily by

instituting network security and control thorough the

server’s own configuration and setup. In most cases,

servers are dedicated to handling network requests

from the client communities. Server-based networks

also provide centralized verification of user accounts

and passwords so that one or more specialized

servers act as sentries, guarding access to the

network [4].

Server-based networks also typically require

only a single log on to the network itself; User needs

not to remember numerous passwords for individual

resources [4]

5. Proposed System

 The overview of the proposed system is shown

in figure 3. In this system, there are two main parts

T

X

Y

Z

Servers

Client

T

T1

T2

T11

T12

T21

T22

X

Y

M

N

P

such as clients and the servers. The clients are the

operational stores and the servers are the product

suppliers. The client stores can make their orders to

many different suppliers or servers with only one

transaction. If the transaction in all servers is

committed, this transaction is committed and never

undone. If the transaction in one of the servers is not

completed, the client saves the transaction with this

server in its local database to be undone.

Figure 3. Overview of the Proposed System

The client has its own local database and DBMS

for daily transaction and the server also has its own

local database and DBMS. By using distributed

transaction for ordering, the client requests the server

DBMS. The server DBMS accepts the client’s order

requests and processes and then returns the

appropriate response to client. By using this

response, the client can know this transaction is

commit or rollback.

This system intends to use five subsystems

namely, user management, order management,

transaction management, storage management and

account management subsystem.

User Management Subsystem

This subsystem manages the different users of the

system by using their login information. This

system will use user names and passwords as

login information. There are three types of users

in this system such as operators, store managers

and managers at server sites.

Order Management Subsystem

This system will manage the order from the client

stores. The items ordered by store are grouped

into their respective servers by using database.

Then these items groups are sent to transaction

management subsystem to make distributed

transactions.

Transaction Management Subsystem

This subsystem is responsible for the management

of distributed transactions. The ordered item

groups are sent to the respective servers as a

transaction. If the whole transaction completes

successfully, this subsystem will commit.

Otherwise, the abort transaction is saved to

rollback for recovery.

Storage Management Subsystem

This subsystem will manage DBMS-specific calls

for information storage and retrieval. It acts as a

common interface for other subsystem to manage

data.

Account Management Subsystem

It will store the account balance of each client.

The server manager can query the account

balance with clients from this system.

As shown in figure 4, this system will request the

login information from the user to make an order. If

the login information is success, the system will

request the order list and then the server lists is also

acquired from the database. After getting the server

address list, the ordered items are grouped by their

respective servers. Then the transaction to first server

is sent and the client will wait to be returned from the

server. If the transaction commits, successful

message will be returned. Otherwise, unsuccessful

message will be returned. This process will iterate

until the transactions to all of the servers hires. After

transaction to all servers is completed, the final result

will be displayed.

At the client, the items are stored by their

respective servers’ names. Example of such item

table is shown in table 1.

Item Name Server

Ballpen Uni Server 1

Pencil Tokiwa Server 2

Book Top Choice Server 3

Bag Tri Server 2

Table 1. Item Table

When the client makes the order, order

management subsystem uses this item table to group

the items with their respective servers. In this

example, pencil and bag orders are grouped because

their servers are the same. Then the order group list is

sent to transaction management subsystem. This

subsystem uses server table to get the ip list of the

servers. Example of the server table is shown in table

2.

Server ip

Server 1 192.168.1.1

Server 2 192.168.3.2

Server 3 192.168.2.4

Table 2. Server Table

After getting the server ip list, the transactions

are sent to each server, one after another.

The system flow diagram is shown in figure 4.

As shown in this figure, this system is limited only

for the administrators to order the items to the

User

Management

Subsystem

Transaction

Management

Subsystem

Order

Management

Subsystem

User

Client Server

Account

Management

Subsystem

Storage

Management

Subsystem

servers. To verify the users or administrators, this

system gets log in information from the user. If the

login information is correct, the administrator can

make order processing. And otherwise, the user is

requested the login information until this information

is correct.

Figure 4. System Flow Diagram

of the Proposed System

When the supplier server accepts the item list,

the account management subsystem in the server

creates the SQL statements with this list to query that

the item ordered (requested) has sufficient amount in

this database. In our example, if the client transaction

to server 1 is Uniball ballpen and the amount is 5000,

then the SQL query statement may be:

Select * from Server1 where Item = ‘Ballpen’ and

Name= ‘Uniball’ and amount-5000>=0

If any value returns from this SQL statement, the

account management subsystem knows that the server

has sufficient amount for this order request. Then it

creates SQL update statement like that:

Update Server1 set amount = amount-5000 where

Item = ‘Ballpen’ and Name= ‘Uniball’

After this update is successfully completed, the

server 1 returns “Transaction is ok” message to the

client. Otherwise the returned message may be one of

the rollback messages.

For the rollback message, the client saves the

order list to this server in its own client database for

recovery process to be ensured the database

consistency.

The components interaction is shown in

sequence diagram of figure 5.

Figure 5. Sequence Diagram of the Proposed System

6. Conclusion

Nowadays, the business processes are wider and

wider and it affects to use distributed transaction

processing in many organization. The objective of

this paper is also to present the use of distributed

transaction in real world, to explain the problem

raised by using distributed transaction and to

maintain the consistency of each database. This

proposed system can be extended for security

checking and bank cheques validation of the client.

Reconciliation is very important for transaction

between enterprises. Reconciliation of order items

between the client and server should be extended in

this system to guarantee the verification.

7. References

[1] A. McFadden, Fred and Hoofer, A. Jeffrey, “ Modern

Database Management (Fourth Edition)”, The

Benjamin/Comings Publishing Company, Inc., 1993.

[2] C. George, D. Jean, and K. Tim, “Distributed Systems

– Concepts and Design (Third Edition)”, Peterson

Education Ltd, Edinburgh Gate, Harlow, Essex CM20 2JE,

England

Begin

Login

Login

succes

s

Input

order list

Get server

ip list

Group the

order

Get the first

server

Is server

valid

Transaction at

this server

Set success

message

Is

transaction

success

Anymore

server

Display

message to user

End

Set unsuccess

message

Yes

No

Yes

No

Save transaction

with this server to

recover

Set save

message

Get another

server

Yes

No

Yes

No

getServerName()

Login()

success

LoginCheck()

success

OrderInput()

ServerName[]

User :User

Management

:Order

Management
:Transaction

Management
:Storage

Management
:Account

Management

send(ItemList)

Commit

Commit
Commit

Save()

Input()

Order() getIPs()

IP[]

[3] C. J. Date, “An Introduction to Database Systems

(Seventh Edition)”, The System Programming Series,

Addison-Wesley Publishing, Company, Inc., 1994.

[4] Mellon, Carnegie, “Client/Server Software Architecture

and Overview”, Software Engineering Institute, 1997.

[5] A.Y. Palevy, et al. “Schema Mediation in Peer Data

Management Systems” in Proceedings of the19th

International Conference on Data Engineering

(ICDE'03) 2003.

[6] DBGlobe. [cited; Available from: http://softsys.cs

.uoi. gr/ dbglobe /index1.html.]

